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Abstract

A crucial step in determining solution structures of proteins using nuclear magnetic resonance (NMR) spectroscopy
is the process of sequential assignment, which correlates backbone resonances to corresponding residues in the
primary sequence of a protein, today, typically using data from triple-resonance NMR experiments. Although
the development of automated approaches for sequential assignment has greatly facilitated this process, the
performance of these programs is usually less satisfactory for large proteins, especially in the cases of missing
connectivity or severe chemical shift degeneracy. Here, we report the development of a novel computer-assisted
method for sequential assignment, using an algorithm that conducts an exhaustive search of all spin systems both
for establishing sequential connectivities and then for assignment. By running the program iteratively with user
intervention after each cycle, ambiguities in the assignments can be eliminated efficiently and backbone resonances
can be assigned rapidly. The efficiency and robustness of this approach have been tested with 27 proteins of sizes
varying from 76 amino acids to 723 amino acids, and with data of varying qualities, using experimental data
for three proteins, and published assignments modified with simulated noise for the other 24. The complexity of
sequential assignment with regard to the size of the protein, the completeness of NMR data sets, and the uncertainty
in resonance positions has been examined.

Introduction

The successful study of protein structure or dynamics
by nuclear magnetic resonance (NMR) spectroscopy
often begins with the sequential assignment of back-
bone resonances. Although sequential assignment can
be completed for small proteins with relative ease,
it can be a time-consuming process for large pro-
teins. The sequential assignment process has been
greatly facilitated by the development of automated
or computer-assisted methods, some of which have
been summarized in a recent review by Moseley and
Montelione (1999). Many of these algorithms assem-
ble connectivity fragments in a deterministic manner
based on inter-residue connectivity information, and
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then determine amino acid types via carbon chemi-
cal shifts (Zimmerman et al., 1997; Li and Sanctuary,
1997a,b; Atreya et al., 2000); others utilize simu-
lated annealing methodologies (Buchler et al., 1997;
Leutner et al., 1998; Bartels et al., 1997), a combi-
nation of the two methods (Lukin et al., 1997), or
a methodology based on comparison to known as-
signments for homologous proteins (Gronwald et al.,
1998). The MAPPER program also exists, which maps
user-assembled connectivity fragments to the protein
sequence using an exhaustive search and a scoring sys-
tem derived from a probability model (Güntert et al.,
2000). Recently, assignment based on residual dipolar
coupling has also been proposed (Tian et al., 2001).

Several problems can arise during the sequential
assignment process that may present difficulties for
automated assignment algorithms, and these programs
differ in the methods they use to address these issues.
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Degeneracies in the resonance data present one of the
most challenging problems, requiring automated pro-
grams to choose among multiple connectivity possibil-
ities. In addition, successful algorithms must be able
to address missing peaks, extra peaks from impurity
or multiple conformers, uncertainty in the amino acid
type determinations, and artificially broken connec-
tivities due to the uncertainty of resonance positions
caused by the distortion or overlap of peaks.

Many algorithms described to date utilize some
form of ‘best-first’ reasoning to resolve ambiguities
in the data. Best-first approaches establish criteria to
select the best candidate from several potential con-
nectivities. Unfortunately, wrong choices made early
in the assignment process can lead to solutions which
can be substantially incorrect (Zimmerman et al.,
1997), and, as a consequence, many of these algo-
rithms break down when faced with highly degenerate
or incomplete data sets. Although simulated annealing
approaches do not make decisions based on best-first
logic, there is a drawback in that their energy functions
can be trapped at local minima instead of reaching a
global minimum.

Because all of these problems become more preva-
lent as the size of the protein under study increases, au-
tomated assignment approaches have faced difficulties
with larger proteins. Although automated assignment
has become practical for proteins with less than 100–
200 amino acids, the automated assignment of proteins
with more than 200 amino acids has been less success-
ful, except in a few particular cases (Lukin et al., 1997;
Moseley and Montelione, 1999; Atreya et al., 2000).

Theoretically one should be able to exhaustively
enumerate all of the possible assignment solutions for
a given protein, and the correct assignment would al-
ways be embedded among these solutions. Thus one
is left only with the task of eliminating improbable
outcomes, until only one remains. Although exhaus-
tive enumeration of all possible solutions has been
deemed exceedingly expensive in computational terms
due to the large number of potential outcomes, we
have found that for a typical protein, the intrinsic
constraints imposed by the connectivity requirements
derived from triple-resonance data reduce the num-
ber of possible solutions significantly, making such
an approach practical. We have also found that this
approach produces unambiguous ‘consensus’ assign-
ments for the majority of residues in a protein. By
using an iterative method of determining consensus
assignments first and eliminating solutions that are not
logically consistent with those results, it is possible

to resolve almost all assignment ambiguities rapidly.
Alternatively, because an exhaustive search develops
multiple assignment solutions in parallel, one can
apply this approach to determine assignments for mul-
tiple conformers of a protein present in solution at the
same time.

Here we report the development of PACES, an in-
teractive program for Protein Sequential Assignment
by Computer-Assisted Exhaustive Search. PACES es-
tablishes sequential assignments based on the sequen-
tial connectivity and residue type information derived
from Cα, Cβ, carbonyl and Hα triple-resonance data,
or any subset of these data. Additional information de-
rived from other experiments, such as residue types or
NOESY constraints, can also be introduced as PACES
input. The efficiency and robustness of this program
have been tested against data for 27 proteins ranging
from 10 to 80 kDa in molecular weight – 76 to 723
residues in length – using either experimental data or
data generated using assignment chemical shifts from
BioMagResBank (BMRB) entries modified with sim-
ulated experimental error. We demonstrate that this
approach yields rapid, accurate and complete assign-
ments for proteins with high quality data, and accurate
partial assignments for proteins with less complete
data. We further explore various factors, such as the
size of the protein, the completeness of data, and the
uncertainty of peak position, that affect the complexity
of sequential assignment.

Theory and methods

Input data

The exhaustive search algorithm accepts the intra-
and inter-residue (i and i-1) chemical shifts of the
alpha, beta and carbonyl carbons, as well as the al-
pha proton(s), for each spin system, or any subsets of
those four pairs of data sets that are available through
triple-resonance experiments (Olejniczak et al., 1992;
Yamazaki et al., 1994a,b). Since the possible amino
acid types of individual spin systems are normally
derived from the chemical shift information for the
Cα, Cβ and carbonyl nuclei, it is important that these
chemical shifts be properly referenced (Markley et al.,
1998). PACES anchors the resonances of a spin sys-
tem to its HSQC peak, and subsequently refers to spin
systems by HSQC peak numbers.

For peak lists created using the XEASY program
(Bartels et al., 1995), the assembly of spin systems
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from spectral data may be accomplished in a semi-
automatic manner. PACES imports the XEASY HSQC
peak list to provide spin system anchors, and uses peak
lists from triple-resonance experiments to fill in ad-
ditional resonances; peaks are added to spin systems
when their HN and N chemical shifts match a given
spin system within a user-defined tolerance. In cases
of ambiguity or amide degeneracy, PACES provides
on-screen dialog boxes allowing the user to determine
how the ambiguity is resolved.

In cases of severe amide degeneracy, in which it
is not possible to separate the peaks belonging to two
different spin systems, multiple spin systems should
be provided to PACES comprising the full set of pos-
sible combinations of peaks. This method will ensure
that the correct combinations of peaks for a particular
spin system is always generated.

Additional information, such as residue types or
sequential connectivity derived from NOE crosspeaks
(Wüthrich, 1986), may also be provided as additional
restraints. PACES accepts possible amino acid types
derived from a great variety of techniques, including
specific isotopic labeling by residue type (LeMaster
and Richards, 1985) or residue-type-specific experi-
ments based on side-chain topology (Schubert et al.,
1999, 2001a,b), or based on the number of cou-
pling partners of Cβ nuclei (Dötsch et al., 1996a–c;
Dötsch and Wagner, 1996). Residue type informa-
tion can also be derived from sidechain experiments
such as HCC(CO)NH-TOCSY (Tashiro et al., 1995)
or CC(CO)NH-TOCSY (Farmer and Venters, 1996).
Restrictions on connectivity, in the form of constraints
specifying how close together two spin systems are on
the protein primary sequence, may be derived from
NOESY spectra and provided to the PACES program.

Assembly of connectivity fragments

Spin systems are connected on the basis of matching
chemical shifts. The intra-residue resonances of every
spin system are compared to the inter-residue reso-
nances of all other spin systems to build a table of
dipeptide connectivities. For two spin systems j and
k, with experimentally measured chemical shifts

j =
{

Cα
j , Cβ

j , C′
j, Hα

j , Cα
j−1, Cβ

j−1, C′
j−1, Hα

j−1

}
,

k =
{

Cα
k, Cβ

k, C′
k, Hα

k, Cα
k−1, Cβ

k−1, C′
k−1, Hα

k−1

}
,

(1)

a dipeptide segment jk will be established if
∣∣∣Cα

j − Cα
k−1

∣∣∣ ≤ δCα,∣∣∣Cβ
j − C

β

k−1

∣∣∣ ≤ δCβ,∣∣∣C′
j − C′

k−1

∣∣∣ ≤ δC ′ ,∣∣∣H α
j − H α

k−1

∣∣∣ ≤ δHα,

(2)

where δCα, δCβ, δC′ and δHα represent user-defined
chemical shift thresholds for Cα, Cβ, carbonyl and Hα,
respectively. The check is disabled for any type of data
(such as Hα) that is not available. For spin systems
with missing resonances, the following rules are used
to establish a dipeptide fragment jk:

(1) If only one type of chemical shifts is available
(such as Cα), the intra-residue resonance of spin
system j must match the inter-residue resonance of
spin system k to establish the connectivity jk.

(2) If two or more types are available, the connectivity
of jk is established if there are at least two complete
and matching sets of resonances.

Spin systems with missing data that do not meet
the criteria listed above are not used during the as-
sembly process, but can be used to extend existing
fragments using interactive tools. The complete list
of possible dipeptide connectivities is stored as a raw
connectivity table.

Larger fragments are then assembled based on this
table. If the connectivity relationships present in the
data are viewed as a directional network (e.g., Fig-
ure 1a), the process is to pick an arbitrary starting point
in the network and trace out all possible downstream
paths. Upstream nodes are added into the network as
they are encountered. Each of these complete paths
through the network is recorded as a connectivity
fragment to be aligned with the protein sequence later.

The assembly process starts with the first spin
system in the table, and its C-terminal connectivity
fragments are traced out by following the linkages
listed in the dipeptide table. Each of these downstream
nodes is flagged as having been processed to prevent
duplication. The algorithm then moves to the next spin
system in the table that has not yet been flagged, and
traces out all of its C-terminal paths. If one of these
C-terminal paths connects onto the N-terminus of a
spin system that has already been processed, the new
fragment is merged with the existing one, and the new
possible pathways are traced out.

If chemical shift degeneracy is present, several sce-
narios may be encountered (Figure 1b). When multiple
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Figure 1. Assembly of connectivity fragments. (a) An example of a directional network representing interconnections between spin systems.
Each square represents a spin system, and each arrow shows a sequential linkage that is possible based on the pairing of interresidue chemical
shifts. Only one path through this network would be the correct path corresponding to a stretch of sequence in the protein. (b) All of the possible
connectivity fragments in this network, each traced with gray shading. The bottom row shows how circular references are addressed in PACES;
the connections shaded in solid gray are generated as fragments, while the hatched gray sections are not pursued.

C-terminal connectivities are present for a particular
spin system, each of those connectivities is traced
out in turn, generating multiple unique fragments
with different C-terminal endings. When multiple spin
systems show C-terminal connectivity converging to
the same spin system, the different permutations are
traced out for each variant N-terminal ending. If a cir-
cular reference is encountered – that is, if an upstream
spin system in a fragment is also identified as a down-

stream branch – the algorithm generates a fragment
that stops at the branch point (Figure 1b, bottom row).

The consequence of this exhaustive search and
enumeration is the generation of spin system frag-
ments containing all of the potential connectivities.

Identification of amino acid types

PACES determines the possible residue type informa-
tion for each spin system by comparing its Cα, Cβ
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Figure 2. Mapping of fragments to the protein sequence. (a) The mapping process involves moving each fragment down the protein sequence,
and testing for matching at each position. The string of circles represents a protein sequence, and the string of squares represents a fragment
of connected spin systems. (b) A spin system is considered to match a residue on the protein sequence if the amino acid type of that residue is
one of the possible amino acid types for that spin system. (c) A matching segment, indicated with gray shading, is identified when two or more
consecutive spin systems match the protein sequence. (d) If degeneracy is present, it is possible for multiple fragments to be generated, which
match to the same position on the protein sequence. In this example, the correct matches for the stretch of sequence are represented as filled
squares, and incorrect matches as open squares. (e) Portions of fragments that do not match the protein sequence, such as the portions shown
inside the dashed box, are recycled to the fragment pool for assignment elsewhere.

and carbonyl chemical shifts to the statistical chemi-
cal shift distribution of each amino acid type derived
from the BioMagResBank. The chemical shift ranges
used by PACES for determining amino acid types are
provided in the Supplementary Information. All of the
possible amino acid types for each spin system are
recorded; the algorithm does not weight the probabili-
ties or choose between them. If the protein under study
is perdeuterated, PACES can be directed to adjust its
amino acid ranges accordingly (Venters et al., 1996a;
Farmer and Venters, 1999).

Mapping of fragments to the protein sequence

The mapping process (Figure 2) involves aligning a
connectivity fragment at the beginning of the protein
sequence, and then moving it down the sequence, one
residue at a time. When the C-terminus of the protein
is encountered, spin systems are looped back to align
with the N-terminus of the protein, until every spin
system in the fragment has been examined at every
position on the protein sequence (Figure 2a). If at any
position, the list of possible amino acid types for a
spin system includes the amino acid type of the paired
residue in the sequence, that pairing is considered a
match (Figure 2b). If multiple sequentially-connected
spin-systems match, the algorithm identifies the result-
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ing segment as a matching fragment (Figure 2c). For
the first spin system in a matching fragment, the inter-
residue (i−1) chemical shifts are also checked against
the amino-acid type of the residue on the protein
sequence that precedes the matched fragment.

Ideally, a ‘correct fragment’ should match the pro-
tein sequence completely if it is aligned at the right
position. It is possible, though, for chemical shift de-
generacy to cause fragments other than the correct one
to be generated, possessing only a certain consensus
portion of the correct fragment, but with different N-
terminal or C-terminal overhangs joined at the point
of degeneracy (Figure 2d). When aligned against the
protein sequence, the ‘correct’ connectivity usually
stands out as the longest contiguous matching frag-
ment (Figure 3). Nonmatching portions of fragments
are recycled into the fragment pool for independent
consideration at other positions (Figure 2e). It is im-
portant to recycle the non-matching portions of the
fragments because in many cases these segments are
real and should be assigned at other positions on the
protein sequence. If a matching fragment is found to
be a subset or superset of a previously identified frag-
ment at the same position on the protein sequence,
only the longer one will be retained.

Because proline residues are not directly observed
as spin-systems in triple-resonance experiments (Ole-
jniczak et al., 1992; Yamazaki et al., 1994a,b),
they must be treated differently. During the mapping
process, spin systems are not allowed to match at
prolines, meaning that matching fragments must be
broken on either side of such a residue.

Filtering of matching fragments

Although the procedure described above is both ‘in-
clusive’ and ‘exhaustive’ – that is to say, all possible
combinations of connectivities are considered and the
correct solution is always embedded within these pos-
sible fragments – this process may generate such
quantities of potential alignments that further exam-
ination by the user would be prohibitive. We have
thus imposed a mask that filters out fragments with
high uncertainties before presentation. Short matching
fragments (mostly di- and tripeptides) are filtered out
unless they contain a spin system with less than five
possible amino acid types. This filter may be disabled
by the user, ordinarily at the latter stages of assign-
ment, to allow the remaining short fragments to be
assigned.

Incorporation of user constraints

Additional constraints derived from a variety of
sources can be utilized during the procedure described
above to reduce the number of possible solutions
that must be considered. Residue-type information
obtained from selective labeling experiments (LeMas-
ter and Richards, 1985), side-chain assignment data
or from amino-acid-type-specific NMR experiments
(Tashiro et al., 1995; Farmer and Venters, 1996;
Dötsch et al., 1996a–c; Dötsch and Wagner, 1996;
Schubert et al., 1999; Schubert et al., 2001a,b) can
be used by the program directly, and are supplied as
a list of possible types. These constraints will over-
ride residue-type determinations based on chemical
shifts. In most cases, sequential or medium range con-
nectivity can also be established from NOESY data
(Wüthrich, 1986), complementing the connectivity in-
formation available from scalar couplings. These spa-
tially defined sequential and medium range connectiv-
ities can be used to eliminate improperly assembled
connectivity fragments.

Implementation

We have implemented this algorithm and provided
appropriate tools for analyzing results in the PACES
package for Microsoft Windows. Core processing oc-
curs in a module written in Microsoft Visual Basic 6.0
and encapsulated in a Component Object Model ob-
ject class, which was compiled as a Win32 executable
for x86 systems running Windows NT/Windows 95 or
later. The user interface was developed in Microsoft
Visual Basic 6.0 as an add-in module to Microsoft
Excel 2000 and later.

Chemical shift data and additional constraints are
provided by the user on a properly-formatted Ex-
cel worksheet, in a text file or from XEASY peak
lists. The program is operated from a drop-down
menu added to Excel automatically when a PACES-
compatible data file is open. Connectivity thresholds,
the protein sequence, and flags governing program
operation – such as one for use with perdeuterated
proteins, directing that the chemical shift ranges be
adjusted to account for deuterium isotope effects – are
selected through a dialog box. Results are presented
on a formatted Excel worksheet, with one column for
each residue (Figure 3). Each matching fragment is
presented as a horizontal row, with the spin system
numbers for each possible assignment positioned in
the appropriate column for the corresponding residue.
The matching fragments are sorted first by starting
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Figure 3. PACES output for human ubiquitin. The ubiquitin sequence is shown across the top, and matching fragments of spin systems are
shown as rows underneath. Each number in a row is the reference number for that spin system; here, for clarity of display, spin systems have
been labeled with the residue number they were assigned to in the published assignments. The most likely assignment for each position is
boxed, as determined by the PACES program based on fragment length.

position on the amino acid sequence, from N- to C-
terminus, and then by length for each fragment, from
longest to shortest. The longest fragment for each re-
gion of the sequence is highlighted in color. If two
long fragments overlap at an end, or if two long
fragments are identical except for conflicting possi-
bilities at particular residues, the conflicting residues
are either not highlighted or highlighted in a cross-
hatched pattern at the user’s option. User-assigned
spin systems are colored in red.

PACES is able to make use of all available mem-
ory during analysis, but typically requires only three
megabytes for overhead, and five to ten megabytes
while processing. If, on account of excessive degen-
eracy, PACES encounters an abnormally large number
of fragments, it will cease processing at a programmed
limit. This limit is set to 10 000 by default, which pre-
vents PACES from running for more than about ten
minutes, and limits memory consumption. The limit
may be changed or removed at the user’s option, how-
ever, to allow PACES to analyze complex situations
with large numbers of fragments. Increasing the limit
an order of magnitude may require as much as 200
megabytes of memory for processing, depending upon
the lengths of the fragments PACES is generating. In

any event, the program will automatically stop execu-
tion when memory is exhausted, without crashing the
system.

Interactive tools are provided for analyzing PACES
results, and for assigning spin systems (Figure 4).
Context-sensitive popup menus enable the user to ac-
cess information about or issue commands regarding a
particular spin system (Figures 4a and 4b), enabling
one to access quickly that spin system’s chemical
shifts and possible amino acid types, the other posi-
tions on the protein’s primary sequence at which it
is suggested for assignment, and the user constraints
supplied for it, and enabling one to assign it at that
position, or to add other constraints. Fragment exten-
sion tools (Figures 4c and 4d) allow users to extend
or join existing fragments. These tools enable one to
locate spin systems that have been eliminated during
the assembly process because (1) their chemical shifts
are outside the connectivity thresholds, due to peak
distortion, overlap, or uncertainty in the peak posi-
tion; (2) their chemical shifts are outside the statistical
range for the corresponding amino acid, as would oc-
cur with residues that bind metals, for example; or
(3) insufficient data are present to establish connec-
tivity, as in the case of missing inter- or intra-residue
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Figure 4. Screen shots of PACES tools for examining assignment possibilities. In all examples here, spin systems are labeled by their published
assignments for clarity of display. (a) Clicking on a spin system label with the right mouse button prompts the program to display a popup
window with information about that spin system. (b) Assigning an isolated residue between two prolines. This example was taken from malate
synthase G after all assignable residues elsewhere in the protein had been assigned. (c) Connecting two spin systems with connectivity outside
the set thresholds. In this example from maltose binding protein with simulated error, the error in the connectivity data between spin systems
198 and 199 is greater than the threshold for establishing connectivity. The PACES display enables the user to determine that the two would be
connected using a wider threshold. (d) Residue H44 of malate synthase G has a Cα chemical shift which is ∼0.5 ppm higher than the PACES
program’s normal range for histidine, and as a consequence, its assignment at that position was not suggested. Using the PACES fragment
extension tool it is possible to determine that the two show connectivity. (e) If the PACES program is subsequently run with extended amino
acid ranges, spin system 44 and those that follow are suggested for assignment.

resonances. Popup information is also available at the
residue headings, often enabling one to assign individ-
ual amino acids or small fragments between prolines
once the remainder of the protein has been assigned
(Figure 4b).

To facilitate the checking of multiple assignment
possibilities against the original NMR spectra, PACES
can interface directly with spectrum analysis pro-
grams, such as XEASY (Bartels et al., 1995). PACES
reads in XEASY sequence and atom list files and
writes out peak lists and strip files with assignments.
PACES can also export completed assignments to the
TALOS program for creating torsion angle restraints
(Cornilescu et al., 1999).

The PACES package is available upon request
from the authors.

Assignment procedure

The procedure for interpreting PACES results is de-
rived from the fact that the longest matching segments

identified by our algorithm have the greatest certainty
of being the correct assignments. Once these spin sys-
tems have been assigned, the PACES program will
exclude solutions that are not logically consistent with
these assignments during future runs. This reduces
the number of possible solutions at other positions
on the protein sequence and enables the user to make
assignments by an iterative process of elimination.

For data sets that are relatively complete (i.e. that
contain data for more than 80% of residues), frag-
ments of seven spin systems or longer can usually
be assigned immediately in their entirety, except for
portions that conflict with other long fragments. Some-
times several long fragments are produced that cover
the same residues and are identical in content except
for one or two residues – usually this variation occurs
at an end, but sometimes it appears in the interior. In
these cases all consensus residues may be assigned ex-
cept for those that conflict. Occasionally a situation
is encountered in which a region of the protein has
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several short fragments that are adjacent to each other
on the sequence, but have not been automatically con-
nected by PACES. These may be examined using the
popup displays to determine whether or not they can
be connected using a wider connectivity tolerance, or
to conclude that they have not been connected simply
due to insufficient data. If several of these short frag-
ments can be connected, they may be treated as one
long fragment and subsequently assigned.

The PACES output for most parts of the protein se-
quence will normally be simplified considerably after
the second run, as solutions that are inconsistent with
the initial assignments will have been eliminated. The
fragment extension tools may then be used to extend
long fragments. Independent fragments that match a
stretch of four or more amino acids may be assigned
if the solution is unique. The program may be run ad-
ditional times after making additional assignments to
allow PACES to remove suggested solutions that are
no longer logically consistent with the established as-
signments. It may be useful to run the PACES program
at this point with extended amino acid ranges (2 ppm
wider than the default ranges), to find any connectiv-
ities that have been eliminated due to residues with
slightly atypical chemical shifts (Figures 4d and 4e).

When most of the protein has been assigned, the
filter mask can be removed to display fragments as
small as dipeptides, and the residue-heading popup
displays can be used to locate possible assignments
for isolated positions, such as a single residue between
two prolines (Figure 4b). In most cases, almost the
entirety of the protein will eventually be assigned in
this manner.

Occasionally, there will still exist a few irresolv-
able instances of spin systems that can not be assigned
because they appear at multiple positions. These is-
sues must be resolved by reference to the original
spectra, by using lineshape analysis, for example, or
by using other types of information, such as NOE
crosspeaks that establish short-range sequential con-
nectivity (Wüthrich, 1986).

With less complete data, using a more conserva-
tive assignment procedure is advisable. Nonconflict-
ing interior portions of fragments with more than ten
connected spin systems may be assigned when no al-
ternatives are presented in other long fragments. These
fragments may be extended in subsequent runs us-
ing the fragment extension tools. Shorter fragments
should be considered as suggestions only and might
not be assignable with certainty.

If it is not possible, due to excessive degeneracy,
to analyze a particular data set at the normal chemical
shift thresholds suggested by the spectral resolution,
it may be possible to assign the protein using reduced
chemical shift thresholds during the initial PACES run.
To do this, thresholds are reduced until the program is
able to run within the limit of the computer’s avail-
able memory. The results are then analyzed using a
conservative procedure, assigning only nonconflicting
interior portions of fragments with ten or more spin
systems. In subsequent runs, the standard thresholds
are restored, and assignments can be made following
the previously described procedure.

Testing procedures

The algorithm as implemented in the PACES package
was tested for the 27 proteins with assignment data
listed in Table 1. In the cases of apoptotic protease ac-
tivating factor I (Zhou et al., 1999), CIDE (Lugovskoy
et al., 1999) and human carbonic anhydrase II (Ven-
ters et al., 1996b), original data sets with extraneous
or missing peaks, and with the experimentally mea-
sured chemical shifts for all residues, were obtained
from the authors and used for testing. These data sets
were received from the authors as lists of possible spin
systems with their resonance chemical shifts, which
included multiple possible chemical shifts for some
resonances, where it was not possible for the authors
to determine the proper peak corresponding to that res-
onance prior to assignment. In these cases, the affected
spin systems were duplicated, with the alternative val-
ues tested independently for the relevant resonance
positions. For the other test proteins, published assign-
ment data were obtained from the BMRB or from orig-
inal publications, with all residues that had reported
HN and N chemical shifts entered as spin-systems,
and with the carbon chemical shifts of the preceding
residue entered as inter-residue chemical shifts. In all
of these tests, Hα chemical shifts were not used for
analysis. Additional tests using Hα chemical shifts are
included as Supplementary Material, available from
the authors. Spin system index numbers were random-
ized before testing. For the calmodulin/M13 complex
(Ikura et al., 1991), Cβ chemical shifts were not avail-
able in the BMRB entry or the original publication,
and were therefore extracted from the chemical shift
database in the program TALOS (Cornilescu et al.,
1999).

All testing was conducted on a 1.6 GHz Intel Pen-
tium system running Windows 2000 with Microsoft
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Table 1. Proteins used for PACES testing

Protein Reference Data types Number of Number of

(BMRB Accession Number) available residuesa residues with

datab

Class I

Malate synthase G Tugarinov et al., 2002 Cα, Cβ, C′ 723 654

Maltose binding protein Gardner et al., 1998 (4354) Cα, Cβ, C′ 370 329

HIV-1 gag protein Tang et al., 2002 (5316) Cα, Cβ, C′ 288 264

6-Phosphogluconolactase Miclet et al., 2002 (5468) Cα, Cβ, C′ 266 239

Human carbonic anhydrase II Venters et al., 1996 Cα, Cβ, C′ 265 230

Rous Sarcoma Virus capsid Campos-Olivas et al., 1999 (4384) Cα, Cβ, C′ 262 220

Human carbonic anhydrase I Sethson, Ingmar, et al. 1996 (4022) Cα, Cβ, C′ 260 241

β-Lactamase Scrofani, S.D.B. et al., 1998 (4102) Cα, Cβ, C′ 232 212

Peptide methionine sulfoxide reductase Beraudi et al., 2001 (4844) Cα, Cβ, C′ 221 197

Hepatitis A 3C protease Bjorndahl et al., 2001 (4836) Cα, Cβ, C′ 217 205

Peptide deformylase Scahill et al., 2001 (4834) Cα, Cβ, C′ 183 165

Calmodulin/M13 complex Ikura et al., 1991 Cα, Cβ, C′ 148 144

Interleukin-4 Powers et al., 1992 (4094) Cα, Cβ C′ 133 128

Lysozyme Kumeta et al., 2002 (5142) Cα, Cβ, C′ 130 126

Ferredoxin Schweimer et al., 2000 (4444) Cα, Cβ, C′ 128 105

Bovine pancreatic ribonuclease A Shimotakahara et al., 1997 (4032) Cα, Cβ, C′ 124 118

CIDE Lugovskoy et al., 1999 Cα, Cβ, C′ 116 106

Human ubiquitin Wang et al., 1995 Cα, Cβ, C′ 76 72

Class II

Adenylate kinase Burlacu-Miron et al., 1999 (4152) Cα, Cβ 214 196

Human prion protein Liu et al., 2000 (4402) Cα, Cβ 210 189

Calmodulin/M13 complex Ikura et al., 1991 Cα, C′ 148 143

Profilin Metzler et al., 1993 (4082) Cα, Cβ 139 131

CIDE Lugovskoy et al., 1999 Cα, Cβ 116 106

Apoptotic protease activating factor I (APAF I) Zhou et al., 1999 Cα, Cβ 96 90

TFIIE core domain Okuda et al., 2000 (4722) Cα, Cβ 81 73

Human ubiquitin Wang et al., 1995 Cα, Cβ 76 72

Yeast ubiquitin Hamilton et al., 2000 (4769) Cα, Cβ 76 66

Class III

Epithelial cadherin (E-cadherin) domains II and III Allatia et al., 2000 (4457) Cα, Cβ 227 161

Superoxide dismutase Vathyam et al., 1999 (4341) Cα, Cβ, C′ 192 105

E. coli EmrE Schwaiger et al., 1998 (4136) Cα, Cβ, C′ 110 72

aIncludes prolines and the N-terminal residue.
bIncludes only those spin systems that were observed directly, and have reported HN and N chemical shifts (i.e. excludes prolines).

Excel 2000. For all proteins except human carbonic
anhydrase II, the PACES program was run initially
with chemical shift tolerances of 0.2 ppm for Cα,
0.4 ppm for Cβ and 0.15 ppm for carbonyl, with the
perdeuteration flag set for those proteins that were
perdeuterated originally (Venters et al., 1996a; Farmer
and Venters, 1999). The human carbonic anhydrase II
data (Venters et al., 1996b) had been collected with

somewhat lower spectral resolution, and therefore Cα,
Cβ and carbonyl chemical shift tolerances of 0.3 ppm,
0.5 ppm and 0.3 ppm, respectively, were used for it.
For proteins that did not include either Cα, Cβ or car-
bonyl chemical shifts, analyses of the corresponding
chemical shifts were turned off. Assignments were
completed following the procedure described above.
If, due to excessive degeneracy, analysis could not
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be conducted for a particular protein using the thresh-
olds listed above, under the default fragment limit of
10 000, the thresholds were decreased by 25–50%,
until the program could run, and assignments were
completed using the reduced threshold procedure de-
scribed earlier. In the case of calmodulin, analyzed
without Cβ data, it was also necessary to raise the frag-
ment limit to 20 000 in order to complete processing.
With the full length prion protein, it was not possible
to complete processing prior to exhausting available
memory.

In real data sets, resolution of the NMR spectrum,
experimental noise, and the distortion or overlap of
resonance peaks create uncertainty in the measured
chemical shift values. This uncertainty must be re-
flected in the threshold used to establish sequential
connectivity of spin systems. If the thresholds are set
to encompass three standard deviations of the noise
distribution on each side of the center point (roughly
equal to, or slightly larger than, the spectral resolu-
tion), such uncertainty will have little effect on the
process of fragment assembly because all connectiv-
ity possibilities falling within these thresholds will be
considered. Occasionally an outlier pairing jk is ob-
served in which the intra-residue chemical shift of spin
system j and the inter-residue chemical shift of spin
system k do not match within the specified threshold,
although in reality they are sequentially connected.
To assess the effects of these outliers on the assign-
ment process, additional tests were conducted on the
proteins that lacked experimental data, in which simu-
lated noise was introduced, so that approximately 1%
of each pairings would fall outside the chemical shift
tolerances, thereby affecting 2–3% of overall connec-
tivities. For each inter-residue resonance in a spin sys-
tem, a noise deviation d was added, with the deviation
determined as d = N(0, δ/2.5), where the function
N(µ, σ) represents a random variable of normal prob-
ability density with mean µ and standard deviation σ,
and where δ represents the chemical shift threshold for
that spin system type. N(µ, σ) random variables were
generated by the Polar Marsaglia method from random
variables with uniform probability density (Morgan,
1984).

In order to compare the effects of having varying
numbers of data sets on the assignments for a given
protein, three of the proteins with Cα, Cβ and carbonyl
data were also tested using only a subset of that data.
CIDE and human ubiquitin were tested with Cα and Cβ

only in these tests, while calmodulin was tested with

Cα and carbonyl only, as was available in the original
BMRB entry from Ikura et al. (1991).

Results

Overview

We have tested this algorithm, as implemented in the
PACES package, with data from 27 proteins with very
different characteristics, ranging in size from ubiqui-
tin, with 76 residues, to malate synthase G, with 723
residues, and in the degree of data completeness from
superoxide dismutase, with data for only 55% of the
protein’s residues spread out intermittently over its se-
quence, to nearly 100% in other cases. All testing was
conducted using carbon chemical shifts only. Some of
these test sets contained data for all three types of car-
bon chemical shifts, while others contained only two
of the three. Thresholds of 0.2 ppm for Cα, 0.4 ppm for
Cβ and 0.15 ppm for carbonyl have been used during
the tests unless stated otherwise. The detailed results
of these tests are listed in Table 2; a summary of the
results is given in Table 3.

Generally speaking, when data were present for the
majority of a protein, the first runs of PACES typi-
cally took between 10 and 75 s using a 1.6 GHz Intel
Pentium system, and provided unambiguous assign-
ments for about 80% of the protein. The remaining
residues could then be assigned by conducting ad-
ditional runs according to the assignment protocol
described above. These runs typically required ten sec-
onds or less of processing time. When less data were
available, the results varied somewhat depending upon
how the missing residues were distributed across the
protein sequence, and depending upon the quality of
the data for the remaining residues. An example of
PACES program output is shown in Figure 3. When
data are plentiful the interpretation of PACES output
is straightforward and proceeds rapidly; in situations
of poor data, however, assignments are less certain,
and the utility of the PACES output lies in the fact that
it provides useful advice for manual spectral analysis.

The 27 proteins used for testing can be divided into
three distinct classes, as indicated in Tables 1 and 2.
Class I proteins had data for 80% or more of residues
and contained, for most residues, all three types of car-
bon chemical shifts used by PACES. Class II proteins
only had data for two types of carbon chemical shifts.
Finally, three proteins with less than 80% of residues
represented were designated as class III proteins.
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Table 2. Detailed results of PACES testing

Protein Number of Original data Data with simulated error

residues Number Fraction Number Iterations Number Fraction Number Iterations

with data assigned assigned incorrect neededa assigned assigned incorrect neededa

Class I

Malate synthase G 654 640 98% 0 4 629 96% 0 5

Maltose binding protein 329 323 98% 0 2 310 94% 0 3

HIV-1 gag protein 264 263 100% 0 3 263 100% 0 3

Human carbonic anhydrase I 241 240 100% 0 3 224 93% 0 3

6-Phosphogluconolactase 239 236 99% 0 2 235 98% 0 4

Human carbonic anhydrase II 230 218 95% 0 6 N/Ab N/Ab N/Ab N/Ab

Rous Sarcoma Virus capsid 220 207 94% 0 3 206 94% 0 2

β-Lactamase 212 203 96% 0 3 201 95% 0 3

Hepatitis A 3C protease 205 205 100% 0 2 198 97% 0 2

Peptide Met sulfoxide reductase 197 194 98% 0 3 195 99% 0 3

Peptide deformylase 165 164 99% 0 3 164 99% 0 2

Calmodulin/M13 complex 144 144 100% 0 2 144 100% 0 2

Interleukin-4 128 128 100% 0 1 128 100% 0 2

Lisozyme 126 126 100% 0 2 126 100% 0 2

Bovine pancreatic ribonuclease A 118 118 100% 0 1 118 100% 0 2

CIDE 106 106 100% 0 2 N/Ab N/Ab N/Ab N/Ab

Ferredoxin 105 105 100% 0 2 105 100% 0 2

Human ubiquitin 72 72 100% 0 1 72 100% 0 1

Class II

Adenylate kinase 196 193 98% 0 3 190 97% 0 5

Human prion protein (full length) 189 0c 0c 0 0c 0c 0c 0 0c

Human prion protein (126–230) 97 94 97% 0 3 95 98% 0 3

Calmodulin/M13 complex 143 143 100% 0 2 78 54% 0 1

Profilin 131 131 100% 0 2 130 99% 0 3

CIDE 106 91 86% 0 3 N/Ab N/Ab N/Ab N/Ab

APAF I 90 87 97% 0 3 N/Ab N/Ab N/Ab N/Ab

TFIIE core domain 73 69 95% 0 2 71 95% 0 1

Human ubiquitin 72 72 100% 0 1 72 100% 0 1

Yeast ubiquitin 66 64 97% 0 2 58 88% 0 2

CIass III

E-cadherin domains II and III 161 113 70% 0 2 28 17% 0 1

Superoxide dismutase 105 77 73% 0 2 54 51% 0 1

E. coli EmrE 72 67 93% 0 4 59 82% 0 2

aOne iteration consists in running the PACES program one time, analyzing the results manually, and making assignments.
bFor this protein, experimental data was available, and it was not necessary to simulate experimental error.
cThis protein could not be analyzed by PACES due to the high level of degeneracy present in the data.

Class I

Eighteen of the test proteins had Cα, Cβ and carbonyl
data for 80% or more of residues, and in each of these
cases, assignment using the PACES package was rapid
and straightforward – both with and without simulated

experimental error. Proteins in this category varied in
size from 76 to 723 amino acids. With all of these
data sets it was possible to assign 95% or more of
the residues. Although in a large protein the amount
of degeneracy is substantial even with three types of
carbon data present for each residue, this degree of de-
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generacy does not prevent analysis by PACES, which
can still be accomplished in a short amount of time.
The amount of degeneracy does influence the degree
to which unambiguous assignments could be made. In
several situations, such as with malate synthase G, a
very small fraction of the spin systems could not be
assigned because two or more assignment possibili-
ties remained for certain spin systems even after all
others had been assigned. Additional constraints such
as NOE information would be needed to resolve these
issues (Tugarinov et al., 2002).

Class II

Proteins in this category contained only two pairs of
carbon chemical shift data, consisting of either Cα and
Cβ or Cα and carbonyl. The results of PACES analysis
varied somewhat depending upon the degree of de-
generacy that was present in the data. With six of the
proteins in this category, processing was rapid and as-
signment was straightforward for almost all residues.
Analysis of adenylate kinase and profilin required us-
ing reduced thresholds during the first run. In the case
of full-length human prion protein, the degeneracy
was so severe that PACES analysis was not possi-
ble. This is not entirely surprising considering that
the N-terminal half (residues 1–125) of the protein is
completely disordered and has a very narrow chem-
ical shift dispersion. When only data corresponding
to the structured C-terminal domain (residues 126–
230) of human prion protein were used (Zahn et al.,
2000), the analysis by PACES was rapid and com-
plete. To measure how the quality of results varies
for a single protein using different numbers of data
sets, three of the Class I proteins were also tested as
Class II proteins, with one of the three data sets re-
moved. For human ubiquitin and CIDE, testing was
conducted with carbonyl data removed. The assign-
ment of human ubiquitin proceeded without difficulty
whether or not carbonyl data were present. Analysis of
CIDE without carbonyl chemical shifts required using
reduced chemical shift thresholds, but was straightfor-
ward. With calmodulin the original BMRB entry from
Ikura et al. (1991), which did not contain Cβ chemi-
cal shifts, was used for reduced data testing. Analysis
with this data missing was possible, but required sev-
eral hours of processing time, and was unable to yield
assignments for substantial portions of the protein.

Class III

Proteins in Class III were missing data for a substan-
tial portion of their residues. For EmrE, the residues
with missing data were concentrated into a specific
region of the protein sequence (residues 32–76), and
our algorithm was easily able to supply unambiguous
assignments for the remainder of the sequence, with or
without simulated experimental noise. For the regions
with mostly missing data, assignment suggestions
were provided that included the correct assignments
for the isolated data points, although it would not be
possible to choose which of these highly ambiguous
suggestions are correct on the basis of the PACES
program output alone. With superoxide dismutase,
however, about half of the available data points were
scattered throughout the length of the protein, sepa-
rated by numerous small gaps, as a result of paramag-
netic relaxation of residues in the vicinity of an Fe3+
ion, while the other half existed as part of extended
segments. Our algorithm had no difficulty assigning
these extended segments, but the short segments and
isolated residues that comprised the remainder of the
data could not be assigned. The available data for E-
cadherin covered long segments in domain II, and only
isolated residues and short segments scattered spo-
radically throughout the unstructured domain III. A
large amount of degeneracy coupled with having only
Cα and Cβ data meant that reduced thresholds were
required for the initial PACES run. Assignment was
straightforward using the original data, but the addi-
tion of simulated noise severely affected the ability to
assign spin systems. If the thresholds were reduced
enough to allow processing to proceed, a substantial
portion of the connectivities in domain II were missed,
leaving only very short fragments.

These three cases represent some of the most dif-
ficult situations encountered with sequential assign-
ment. EmrE and E-cadherin both were missing data
for a large number of residues in particular regions
of their protein sequences, with the former due to an
unusual T2 relaxation behavior, and the latter to the
missing residues in an unstructured domain. Super-
oxide dismutase belongs to a class of metalloproteins
where signals were not observed for residues in the
vicinity of a paramagnetic Fe3+ ion. PACES was able
to handle these three situations effectively.
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Testing with simulated noise outside the connectivity
thresholds

In real data sets, the uncertainty of the peak positions
for a small number of resonances may be larger than
the connectivity threshold expected based on spec-
tral resolution, leading to broken connectivities at
these positions. To test the robustness of the PACES
program in terms of experimental uncertainty, we cal-
ibrated our noise distribution so that about 2–3% of
sequentially-connected spin systems would fall out
of the defined connectivity thresholds. Although con-
nectivity would be broken at these spin systems, we
have designed interactive software tools for dealing
with this situation that enable users to extend exist-
ing fragments, to merge broken fragments, or to fill
in assignment gaps (Figures 4c and 4d). Sometimes,
however, these poor pairings had more substantive
global effects on the assignment process, by cutting
long fragments into very short pieces, for example.
As a result, for some of the proteins studied, placing
3% of connectivity pairings outside the connectivity
thresholds disrupted assignments for more than 3% of
residues. The effect of having noise larger than the
connectivity threshold is most influential for proteins
with a reduced number of data sets (class II) or incom-
plete data (class III), sometimes leading to a dramatic
drop in the completeness of the assignment. However,
for proteins with all three sets of connectivity data
(class I), there is little difference in the final statistics
for the completeness of the assignments (Tables 1 and
2).

Discussion

Sequential assignment is a prerequisite for solution
structure determination, and efforts to automate and
accelerate this process have continued to receive sub-
stantial attention. Although exhaustive search methods
have been proposed as optimal solutions to many ob-
stacles encountered with sequential assignment, it has
been thought that the implementation of such methods
would be impossible due to the astronomical num-
ber of potential outcomes. Here we show that the
restrictions imposed by connectivity requirements be-
tween spin systems significantly reduce the number
of possible solutions, making it feasible to analyze
connectivities exhaustively. By aligning the fragments
produced by such an analysis at every position along
a protein sequence, the result is the set of all possible

assignments – that is, all that are consistent with the re-
quirements for establishing connectivity and mapping
to the sequence. An interactive, iterative procedure
involving assigning spin systems with certainty first,
will reduce the number of solutions at other positions
on the sequence, allowing most assignments to be
completed quickly and enabling the user to focus on
those few points of degeneracy that must be resolved
by manual examination of the spectra.

We have implemented this approach in the PACES
program, a flexible tool that is able to reduce sub-
stantially the time and effort required of an NMR
spectroscopist to complete sequential assignments of
even very large proteins. When high quality data are
provided, sequential assignment with this method is a
rapid and essentially automated procedure. However,
this tool is generally able to make at least some use
out of whatever data can be provided. Its ability to
generate useful information even from data sets with
very poor quality, and to integrate a wide variety of
information from numerous sources to arrive at the
correct assignment solution, make it a flexible tool for
data analysis.

Errors vs. completeness of the assignment

The fact that our algorithm performs an exhaustive
search of connectivity and assignment possibilities
means that the correct assignment will always be pre-
sented as one of the possible assignments for any given
position on the protein sequence so long as the data are
complete, the intra- and inter-residue chemical shifts
between sequentially connected spin systems match
up within the user-defined thresholds, and the chem-
ical shifts fall within the normal ranges for the amino
acid types. Because of degeneracy, the correct solution
might be one of several presented in some cases, but
it would always be presented. Naturally these ideal
conditions are rarely met in practice, and it is there-
fore theoretically possible for this algorithm to yield
incorrect results for certain residues under extreme
situations. Whether one is determining sequential as-
signments by hand or with a computer, however, there
are always a handful of situations in which one could
not tell that an assignment might be incorrect – such as
when a spin system is missing or has atypical chemi-
cal shifts, and another spin system happens to fill the
position instead. These situations are quite rare: Af-
ter testing 27 proteins we have yet to encounter one.
Nevertheless they are theoretically possible, and it is
always wise to check assignments generated by this
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method against other information, such as the cross-
peaks observed in NOESY spectra. It is important to
point out that the extremely low error rate of our ap-
proach is sometimes a trade-off with the completeness
of the assignment. This is especially the case for class
II and class III proteins with reduced data sets or in-
complete data, where only a low percentage of the data
can be unambiguously assigned.

Consequences of missing residues or atypical
chemical shifts

The most common result encountered when spin sys-
tems are missing from the data is that a gap is left
in the assignments where those spin systems should
have been assigned. In some cases one or two spin
systems that would be connected to a missing spin
system will not appear as suggested assignments in
PACES because they are now isolated as single spin
systems or very short segments and are thus filtered
out before presentation. PACES provides tools to lo-
cate and assign isolated residues that would often
allow these assignments to be made later in the process
(Figure 4b).

Residues that have unusual chemical shifts – as
would result from binding a metal, for example –
will likewise leave a gap in the suggested assign-
ments (Figure 4d). It is frequently straightforward to
assign these residues once 90% or more of the pro-
tein is assigned, as they will show connectivity to the
spin systems assigned on each side of the gap po-
sition, and alternative connectivities at that position
will usually have been eliminated. It is important to
note that although using tighter chemical shift ranges
to derive residue type information sometimes causes
gaps in the initial assigned fragments, it improves the
accuracy and reduces the uncertainty in the overall as-
signments (Andrec and Levy, 2002). To compensate
for the effects of using tighter ranges, PACES also
includes an option to extend all amino acid ranges
1 ppm higher and 1 ppm lower, which often allows
residues with atypical chemical shifts to be located and
assigned automatically after making an initial round of
assignments (Figure 4e).

Thresholds for establishing connectivity

The thresholds used to establish connectivities must be
set correctly for the algorithm to give accurate results.
Ideally the thresholds should be set slightly larger
than the uncertainty in peak positions expected on the
basis of the digital resolution of the NMR spectra,

ensuring that most correct pairings between sequen-
tially connected spin systems are represented among
the assembled fragments. It is important to remem-
ber, however, that the computational complexity of
conducting an exhaustive search varies substantially
depending upon the degree of degeneracy present in
the data, and thresholds that are slightly too large can
result in an observed degeneracy orders of magnitude
beyond what is feasible for analysis. Choosing the
appropriate thresholds for a given situation requires
balancing the concerns about observing all of the real
connectivities with the need to keep degeneracy within
limits.

During our testing of the PACES program we used
a Cα threshold of 0.2 ppm, a Cβ threshold of 0.4 ppm,
and a carbonyl threshold of 0.15 ppm, which reflect the
level of spectral resolution most commonly used for
triple resonance experiments. When these thresholds
are used with all three sets of carbon resonances, de-
generacy was not an issue even for the largest proteins
tested (Figure 5). With data for Cα and Cβ or Cα and
carbonyl only (class II), however, our results varied
substantially – four proteins could be analyzed with-
out difficulty, three required reduced tolerances, two
required several hours of processing, and one could
not be analyzed at its full length.

The effects of a reduced number of data sets on the
robustness of the program

Our results suggest that collecting triple-resonance
data for Cα, Cβ and carbonyl carbon nuclei would be
highly recommended when conducting sequential as-
signment using the PACES program. With three sets
of data, the percentage of residues that can be as-
signed is higher, the number and length of program
runs are decreased, and most importantly, the robust-
ness of the program against experimental uncertainties
is significantly improved over the results with two sets
(Tables 2 and 3). However, the PACES program was
designed to be flexible such that it is possible to gener-
ate useful results without meeting these conditions, as
we have demonstrated with eight proteins (class II, Ta-
bles 2 and 3). How difficult this may be, both in terms
of the ambiguity in the suggested assignments and also
the computational complexity of running the program,
varies considerably depending upon the particular pro-
tein. Whenever possible, the program should be run
with tolerances equal to or greater than the spectral
resolution; it is possible, however, to employ a strategy
of using reduced thresholds initially to work around
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Figure 5. Analysis of the complexity of sequential assignment using PACES. (a) Results with data for Cα and Cβ only. (b) Results with data
for Cα, Cβ and C′. In each graph, the y-axis represents the complexity index, the ratio of fragments generated by PACES over the expected
minimal number of fragments separated by prolines in a protein. A complexity index of 1.0 indicates a single solution with no degeneracy. The
x-axis represents the relative threshold sizes as a proportion to the thresholds used in assignment testing (δCα of 0.2 ppm, δCβ of 0.4 ppm and
δC′ of 0.15 ppm).
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Table 3. Summary of PACES test results

Protein class/ Number of Number of Number of Fraction of Number of Error

test category proteins residues assigned data points incorrect rate

analyzed with data residues assigned assignments

Class I 18

Original data 3755 3692 98.3% 0 0.0%

Data with simulated error 3419 3318 97.0% 0 0.0%

Experimental data 336 324 96.4% 0 0.0%

Class II 9

Original data 974 944 96.9% 0 0.0%

Data with simulated error 778 694 89.2% 0 0.0%

Experimental data 196 178 90.8% 0 0.0%

Class III 3

Original data 338 257 76.0% 0 0.0%

Data with simulated error 338 141 41.7% 0 0.0%

All Proteins 30

Original data 5067 4893 96.6% 0 0.0%

Data with simulated error 4535 4153 91.6% 0 0.0%

Experimental data 532 502 94.4% 0 0.0%

problems with excessive degeneracy. The combination
of Cα and Cβ data works better than that of Cα and car-
bonyl, because Cβ chemical shifts are more dispersed
and enable more precise determinations of amino acid
types than carbonyl chemical shifts.

Naturally, having an additional set of connectivity
constraints from Hα (Olejniczak et al., 1992) would
make the assignment process faster and more reliable,
and we have provided the capability to use this in-
formation. Testing results using Hα connectivity are
provided as Supplementary Material.

The complexity of the sequential assignment problem

The complexity of sequential assignment is directly
related to the degree of degeneracy present in the res-
onance data, and thus is greatly influenced by the size
of the protein, the number of paired data sets used
to deduce connectivity, and the threshold used to es-
tablish such connectivity. In order to obtain a better
understanding of the complexity of the sequential as-
signment problem, we employed the PACES program
to investigate the number of connectivity fragments
assembled for proteins of varying size, containing
different numbers of data sets, and with different

thresholds. For each protein there are a minimum
number of fragments that one would expect to find,
separated by proline residues. Any fragments that are
generated beyond this number are extraneous, result-
ing from degeneracy. Thus, the ratio of the number
of fragments generated during the fragment assembly
process over the expected number of fragments would
be a good index of the complexity of the sequential
assignment problem. A complexity index of 1.0 indi-
cates that there is a single solution for the assignments,
with no degeneracy and thus no alternative outcomes.
Figure 5 shows plots of such a complexity index as a
function of the chemical shift threshold used, for six
proteins, with Cα and Cβ data in one plot and Cα, Cβ

and carbonyl data in the other. To reduce the number
of parameters, the thresholds have been defined as a
ratio of those being used to determine complexity to
those used for the assignment testing (0.2 ppm for Cα,
0.4 ppm for Cβ and 0.15 ppm for carbonyl). When
three sets of data for Cα, Cβ and carbonyl carbons
were available, degeneracy was only an issue for the
two largest proteins tested – maltose binding protein
and malate synthase G – and even for these it was not
a problem so long as the tolerances were held to within
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10% of the values used during the assignment testing
(0.22 ppm, 0.44 ppm, and 0.17 ppm for Cα, Cβ and
carbonyl, respectively). For others, thresholds as large
as 0.3 ppm, 0.6 ppm and 0.23 ppm for Cα, Cβ and
carbonyl, respectively, do not cause problems. When
only Cα and Cβ data are available, however, the com-
plexity of sequential assignment can quickly become
a problem for all but the smallest of proteins, even at
very narrow thresholds.

Other factors, such as the completeness of the spin
system data and the uncertainty of the measured chem-
ical shifts also add to the complexity of the sequen-
tial assignment by generating even more connectivity
fragments during the assembly process. For a given
protein, however, these factors only represent a linear
portion of the complexity of the sequential assign-
ment problem, which otherwise grows exponentially
as a function of the chemical shift thresholds used to
establish the connectivity fragments. We have there-
fore excluded these considerations from the above
discussions.

Multiple conformers

Stemming from the fact that it retains multiple as-
signment possibilities, our algorithm has the unique
capability of being able to track assignments for multi-
ple conformers simultaneously. A multiple conformer
mode is included in the PACES program, in which as-
signing a spin system to a residue prevents that spin
system from being assigned elsewhere in the protein,
but does not prevent additional spin systems from be-
ing positioned at that point on the protein sequence.
This should enable one to assemble alternative assign-
ments for sections of protein sequence, corresponding
to different conformers.

Conclusions

We have developed a novel approach to protein se-
quential assignment based on the methods used by
NMR spectroscopists to assign proteins manually, but
taking advantage of the abilities of a computer to work
through all of the possibilities for connecting peaks
and mapping them to the protein sequence. Our ex-
haustive search algorithm generates a set of spin sys-
tem segments anchored at positions on the protein se-
quence, providing numerous assignment possibilities.
By assigning those that have the most certainty first
– those that are longest and have the most contiguous

residue-to-spin-system matches – and gradually work-
ing through to less certain assignments, it is possible to
progress rapidly through almost all of the assignments
for a protein with relatively complete data. For data of
lower quality, this method is frequently able to yield
assignments for those parts of the protein represented
in the data. When multiple assignments are possible at
a position on the sequence, it can provide them all for
consideration. We have tested PACES using data from
27 proteins and found that it has been able to produce
correct results in every situation examined, including
with proteins as large as 723 amino acids. We believe
that this method has great potential to accelerate se-
quential assignment, and to simplify the work involved
in determining protein solution structure by NMR.
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